Information, Misallocation and Aggregate Productivity

Joel M. David
USC

Hugo A. Hopenhayn
UCLA

Venky Venkateswaran
NYU Stern

Sep 2015
This paper

“Misallocation,” i.e., dispersion in MP’s ⇒ large losses in TFP and output

- But sources of distortions still unclear...
- Role of imperfect information? Informational role of financial markets?

1. What we do

- Heterogeneous firms choose inputs under imperfect info
- Firms learn from internal sources and noisy asset prices
- Quantify frictions using stock market/production data in US, China, India

2. What we find

- Significant micro uncertainty, esp. in China and India
 → accounts for 20-50% (+...) of MRPK dispersion
- Sizable aggregate impact
 → TFP losses: 7-10% in China and India, 4% in US; lower bound...?
- Only limited learning from markets; firm internal sources are key
This paper

“Misallocation,” i.e., dispersion in MP’s \(\Rightarrow \) large losses in TFP and output

- But sources of distortions still unclear...
- Role of imperfect information? Informational role of financial markets?

1. What we do

- Heterogeneous firms choose inputs under imperfect info
- Firms learn from internal sources and noisy asset prices
- Quantify frictions using stock market/production data in US, China, India

2. What we find

- Significant micro uncertainty, esp. in China and India
 \(\rightarrow \) accounts for 20-50\% (+...) of MRPK dispersion
- Sizable aggregate impact
 \(\rightarrow \) TFP losses: 7-10\% in China and India, 4\% in US; lower bound...?
- Only limited learning from markets; firm internal sources are key
This paper

“Misallocation,” i.e., dispersion in MP’s \Rightarrow large losses in TFP and output

- But sources of distortions still unclear...
- Role of imperfect information? Informational role of financial markets?

1. What we do

- Heterogeneous firms choose inputs under imperfect info
- Firms learn from internal sources and noisy asset prices
- Quantify frictions using stock market/production data in US, China, India

2. What we find

- Significant micro uncertainty, esp. in China and India
 \rightarrow accounts for 20-50% (±…) of MRPK dispersion
- Sizable aggregate impact
 \rightarrow TFP losses: 7-10% in China and India, 4% in US; lower bound…?
- Only limited learning from markets; firm internal sources are key
Overview

- Simplified model
- Full model and numerical results
- Robustness
- Other evidence
Simplified model

Homogeneous good, only capital, no aggregate risk

- Continuum of producers: \(Y_{it} = A_{it} K_{it}^{\alpha} \), \(a_{it} \sim iid, \mathcal{N}(0, \sigma_{\mu}^2) \)

Input choice under incomplete info:

- Profit maximization: \(\max_{K_{it}} \mathbb{E}_{it} [A_{it}] K_{it}^{\alpha} - RK_{it} \)
- Conditional on info \(I_{it} \), \(a_{it} \sim \mathcal{N}(E_{it} a_{it}, \mathbb{V}) \)

\(\mathbb{V} \) is key object:

- Misallocation: \(\sigma_{mpk}^2 = \mathbb{V} \)
- Aggregate TFP: \(a = a^* - \frac{1}{2} \frac{\alpha}{1-\alpha} \sigma_{mpk}^2 = a^* - \frac{1}{2} \frac{\alpha}{1-\alpha} \mathbb{V} \)

\(\Rightarrow TFP \downarrow \) in \(\mathbb{V} \); size of effect \(\uparrow \) in \(\alpha \)
Simplified model

Homogeneous good, only capital, no aggregate risk

- Continuum of producers: \(Y_{it} = A_{it} K_{it}^\alpha, \quad a_{it} \sim iid, \quad N(0, \sigma^2_{\mu}) \)

Input choice under incomplete info:

- Profit maximization: \(\max_{K_{it}} \mathbb{E}_{it} [A_{it}] K_{it}^\alpha - RK_{it} \)
- Conditional on info \(I_{it}, \quad a_{it} \sim N(\mathbb{E}_{it} a_{it}, \nabla) \)

\(\nabla \) is key object:

- Misallocation: \(\sigma^2_{mpk} = \nabla \)
- Aggregate TFP: \(a = a^* - \frac{1}{2} \frac{\alpha}{1-\alpha} \sigma^2_{mpk} = a^* - \frac{1}{2} \frac{\alpha}{1-\alpha} \nabla \)

\(\Rightarrow \) TFP ↓ in \(\nabla \); size of effect ↑ in \(\alpha \)
Simplified model

Homogeneous good, only capital, no aggregate risk

- Continuum of producers: \(Y_{it} = A_{it} K_{it}^\alpha \), \(a_{it} \sim iid, \mathcal{N}(0, \sigma^2_\mu) \)

Input choice under incomplete info:

- Profit maximization: \(\max_{K_{it}} E_{it} [A_{it}] K_{it}^\alpha - RK_{it} \)
- Conditional on info \(I_{it} \), \(a_{it} \sim \mathcal{N}(E_{it} a_{it}, \mathcal{V}) \)

\(\mathcal{V} \) is key object:

- Misallocation: \(\sigma^2_{mpk} = \mathcal{V} \)
- Aggregate TFP: \(a = a^* - \frac{1}{2} \frac{\alpha}{1-\alpha} \sigma^2_{mpk} = a^* - \frac{1}{2} \frac{\alpha}{1-\alpha} \mathcal{V} \)

\(\Rightarrow \) TFP ↓ in \(\mathcal{V} \); size of effect ↑ in \(\alpha \)
Characterizing ∇

The firm’s information set \mathcal{I}_{it}

1. Private signal: $s_{it} = a_{it} + e_{it}$, $e_{it} \sim \mathcal{N}(0, \sigma_e^2)$

2. Stock price: $p_{it} \approx a_{it} + \eta_{it}$, $\eta_{it} \sim \mathcal{N}(0, \sigma_\eta^2)$

If $(a_{it}, e_{it}, \eta_{it})$ independent (relaxed later):

$$\nabla = \frac{1}{\frac{1}{\sigma_\mu^2} + \frac{1}{\sigma_e^2} + \frac{1}{\sigma_\eta^2}}$$
Characterizing \mathbb{V}

The firm’s information set \mathcal{I}_{it}

1. Private signal: $s_{it} = a_{it} + e_{it}, \quad e_{it} \sim \mathcal{N}(0, \sigma_e^2)$
2. Stock price: $p_{it} \approx a_{it} + \eta_{it}, \quad \eta_{it} \sim \mathcal{N}(0, \sigma_\eta^2)$

If $(a_{it}, e_{it}, \eta_{it})$ independent (relaxed later):

$$\mathbb{V} = \frac{1}{\frac{1}{\sigma_\mu^2} + \frac{1}{\sigma_e^2} + \frac{1}{\sigma_\eta^2}}$$
Identifying information frictions

The challenge: information I_{it} not directly observable

$$k_{it} = \frac{\mathbb{E}_{it} [a_{it}]}{1 - \alpha}$$

→ In principle, could identify ∇ from $\sigma_{mpk}, \sigma_k^2, \sigma_{ak}$, etc...

But, suppose:

$$k_{it} = \frac{\mathbb{E}_{it} [a_{it} + \tau_{it}]}{1 - \alpha}$$

→ Other ‘distortions’ complicate inference from these moments

Our strategy:

- Use correlation of stock returns with Δk_{it} and Δa_{it} (denoted ρ_{pk}, ρ_{pa})
- Model implies tight connection between these correlations and ∇
Identifying information frictions

The challenge: information I_{it} not directly observable

$$k_{it} = \frac{E_{it} [a_{it}]}{1 - \alpha}$$

→ In principle, could identify V from $\sigma_{mpk}^2, \sigma_k^2, \sigma_{ak}$, etc...

But, suppose:

$$k_{it} = \frac{E_{it} [a_{it} + \tau_{it}]}{1 - \alpha}$$

→ Other ‘distortions’ complicate inference from these moments

Our strategy:

• Use correlation of stock returns with Δk_{it} and Δa_{it} (denoted ρ_{pk}, ρ_{pa})
• Model implies tight connection between these correlations and V
Identifying information frictions

The challenge: information I_{it} not directly observable

$$k_{it} = \frac{\mathbb{E}_{it}[a_{it}]}{1 - \alpha}$$

\rightarrow In principle, could identify ∇ from $\sigma_{mpk}^2, \sigma_k^2, \sigma_{ak}$, etc...

But, suppose:

$$k_{it} = \frac{\mathbb{E}_{it}[a_{it} + \tau_{it}]}{1 - \alpha}$$

\rightarrow Other ‘distortions’ complicate inference from these moments

Our strategy:

- Use correlation of stock returns with Δk_{it} and Δa_{it} (denoted ρ_{pk}, ρ_{pa})
- Model implies tight connection between these correlations and ∇
Identifying information frictions

The challenge: information \mathcal{I}_{it} not directly observable

$$k_{it} = \frac{\mathbb{E}_{it} [a_{it}]}{1 - \alpha}$$

→ In principle, could identify ∇ from $\sigma_{mpk}^2, \sigma_k^2, \sigma_{ak}$, etc...

But, suppose:

$$k_{it} = \frac{\mathbb{E}_{it} [a_{it} + \tau_{it}]}{1 - \alpha}$$

→ Other ‘distortions’ complicate inference from these moments

Our strategy:

- Use correlation of stock returns with Δk_{it} and Δa_{it} (denoted ρ_{pk}, ρ_{pa})
- Model implies tight connection between these correlations and ∇
Identification - our strategy

1. Directly measure $a_{it} = y_{it} - \alpha k_{it}$ (and so, σ^2_μ)

 \[
 \rho_{pa} = \frac{1}{\sqrt{1 + \frac{\sigma^2_n}{\sigma^2_\mu}}} \quad \frac{\nu}{\sigma^2_\mu} = 1 - \left(\frac{\rho_{pa}}{\rho_{pk}}\right)^2
 \]

 ρ_{pa} → noise in prices
 ρ_{pk} relative to ρ_{pa} → firm uncertainty

3. Straightforward to add persistence.

 - E.g., with permanent shocks, $\rho_{pk} - \rho_{pa}$ → $\frac{\nu}{\sigma^2_\mu}$

Next: Robustness to other distortions τ_{it}, measurement error etc.
1. Directly measure $a_{it} = y_{it} - \alpha k_{it}$ (and so, σ^2_μ)

2. For now, $\tau_{it} = 0.$

\[
\rho_{pa} = \frac{1}{\sqrt{1 + \frac{\sigma^2_n}{\sigma^2_\mu}}} \quad \frac{\nabla \sigma^2}{\sigma^2_\mu} = 1 - \left(\frac{\rho_{pa}}{\rho_{pk}}\right)^2
\]

- $\rho_{pa} \rightarrow$ noise in prices
- ρ_{pk} relative to $\rho_{pa} \rightarrow$ firm uncertainty

3. Straightforward to add persistence.

- E.g., with permanent shocks, $\rho_{pk} - \rho_{pa} \rightarrow \frac{\nabla \sigma^2}{\sigma^2_\mu}$

Next: Robustness to other distortions τ_{it}, measurement error etc.
Identification - our strategy

1. Directly measure $a_{it} = y_{it} - \alpha k_{it}$ (and so, σ^2_μ)

2. For now, $\tau_{it} = 0.$

$$\rho_{pa} = \frac{1}{\sqrt{1 + \frac{\sigma^2_\eta}{\sigma^2_\mu}}} \quad \frac{\nabla}{\sigma^2_\mu} = 1 - \left(\frac{\rho_{pa}}{\rho_{pk}} \right)^2$$

$\rho_{pa} \rightarrow$ noise in prices
ρ_{pk} relative to $\rho_{pa} \rightarrow$ firm uncertainty

3. Straightforward to add persistence.

- E.g., with permanent shocks, $\rho_{pk} - \rho_{pa} \rightarrow \frac{\nabla}{\sigma^2_\mu}$

Next: Robustness to other distortions τ_{it}, measurement error etc.
Identification - our strategy

1. Directly measure \(a_{it} = y_{it} - \alpha k_{it} \) (and so, \(\sigma^2_{\mu} \))

2. For now, \(\tau_{it} = 0. \)

\[
\rho_{pa} = \frac{1}{\sqrt{1 + \frac{\sigma^2_{\eta}}{\sigma^2_{\mu}}}} \quad \frac{\mathbb{V}}{\sigma^2_{\mu}} = 1 - \left(\frac{\rho_{pa}}{\rho_{pk}} \right)^2
\]

\[\rho_{pa} \rightarrow \text{noise in prices}\]

\[\rho_{pk} \text{ relative to } \rho_{pa} \rightarrow \text{firm uncertainty}\]

3. Straightforward to add persistence.

- E.g., with permanent shocks, \(\rho_{pk} - \rho_{pa} \rightarrow \frac{\mathbb{V}}{\sigma^2_{\mu}} \)

Next: Robustness to other distortions \(\tau_{it} \), measurement error etc.
Identification - other frictions

Distortions from correlated and uncorrelated factors (with \(a_{it} \)):

\[
\tau_{it} = \gamma\mu_{it} + \varepsilon_{it}, \quad \varepsilon_{it} \sim \mathcal{N}(0, \sigma_{\varepsilon}^2)
\]

\[
\Rightarrow k_{it} = \frac{(1 + \gamma) E[a_{it}] + \varepsilon_{it}}{1 - \alpha}
\]

1. Only correlated distortions (\(\gamma \neq 0, \sigma_{\varepsilon}^2 = 0 \)):

\[
\Rightarrow \sigma_{mpk}^2 > \nabla; \quad \text{but, } 1 - \left(\frac{\rho_{pa}}{\rho_{pk}} \right)^2 = \frac{\nabla}{\sigma_{\mu}^2} \text{ still holds}
\]

2. Only uncorrelated distortions (\(\gamma = 0, \sigma_{\varepsilon}^2 \neq 0 \)):

\[
\Rightarrow \sigma_{mpk}^2 > \nabla; \quad \text{but, } 1 - \left(\frac{\rho_{pa}}{\rho_{pk}} \right)^2 = \frac{\nabla}{\sigma_{\mu}^2} - \frac{\sigma_{\varepsilon}^2}{\sigma_{\mu}^2} < \frac{\nabla}{\sigma_{\mu}^2} \quad \text{(conservative)}
\]

Note: Results extend to permanent shocks as well
Identification - other frictions

Distortions from correlated and uncorrelated factors (with a_{it}):

$$
\tau_{it} = \gamma \mu_{it} + \varepsilon_{it}, \quad \varepsilon_{it} \sim \mathcal{N}(0, \sigma^2_{\varepsilon})
$$

$$
\Rightarrow k_{it} = \frac{(1 + \gamma) \mathbb{E}[a_{it}] + \varepsilon_{it}}{1 - \alpha}
$$

1. Only correlated distortions ($\gamma \neq 0, \sigma^2_{\varepsilon} = 0$):

$$
\Rightarrow \sigma^2_{mpk} > \mathbb{V}; \quad \text{but,} \quad 1 - \left(\frac{\rho_{pa}}{\rho_{pk}}\right)^2 = \frac{\mathbb{V}}{\sigma^2_{\mu}} \quad \text{still holds}
$$

2. Only uncorrelated distortions ($\gamma = 0, \sigma^2_{\varepsilon} \neq 0$):

$$
\Rightarrow \sigma^2_{mpk} > \mathbb{V}; \quad \text{but,} \quad 1 - \left(\frac{\rho_{pa}}{\rho_{pk}}\right)^2 = \frac{\mathbb{V}}{\sigma^2_{\mu}} - \frac{\sigma^2_{\varepsilon}}{\sigma^2_{\mu}} < \frac{\mathbb{V}}{\sigma^2_{\mu}} \quad \text{(conservative)}
$$

Note: Results extend to permanent shocks as well
Identification - other frictions

Distortions from correlated and uncorrelated factors (with a_{it}):

$$
\tau_{it} = \gamma \mu_{it} + \varepsilon_{it}, \quad \varepsilon_{it} \sim \mathcal{N}(0, \sigma_{\varepsilon}^2)
$$

$$
\Rightarrow k_{it} = \frac{(1 + \gamma) \mathbb{E}[a_{it}] + \varepsilon_{it}}{1 - \alpha}
$$

1. Only correlated distortions ($\gamma \neq 0$, $\sigma_{\varepsilon}^2 = 0$):

$$
\Rightarrow \sigma_{mpk}^2 > V; \quad \text{but, } 1 - \left(\frac{\rho_{pa}}{\rho_{pk}}\right)^2 = \frac{V}{\sigma_{\mu}^2} \quad \text{still holds}
$$

2. Only uncorrelated distortions ($\gamma = 0$, $\sigma_{\varepsilon}^2 \neq 0$):

$$
\Rightarrow \sigma_{mpk}^2 > V; \quad \text{but, } 1 - \left(\frac{\rho_{pa}}{\rho_{pk}}\right)^2 = \frac{V}{\sigma_{\mu}^2} - \frac{\sigma_{\varepsilon}^2}{\sigma_{\mu}^2} < \frac{V}{\sigma_{\mu}^2} \quad \text{(conservative)}
$$

Note: Results extend to permanent shocks as well
Identification - other frictions

Distortions from correlated and uncorrelated factors (with a_{it}):

$$
\tau_{it} = \gamma \mu_{it} + \varepsilon_{it}, \quad \varepsilon_{it} \sim \mathcal{N} \left(0, \sigma_{\varepsilon}^2\right)
$$

$$
\Rightarrow k_{it} = \frac{(1 + \gamma) \mathbb{E}[a_{it}] + \varepsilon_{it}}{1 - \alpha}
$$

1. Only correlated distortions ($\gamma \neq 0, \sigma_{\varepsilon}^2 = 0$):

$$
\Rightarrow \sigma_{mpk}^2 > \nabla; \quad \text{but, } 1 - \left(\frac{\rho_{pa}}{\rho_{pk}}\right)^2 = \frac{\nabla}{\sigma_{\mu}^2} \quad \text{still holds}
$$

2. Only uncorrelated distortions ($\gamma = 0, \sigma_{\varepsilon}^2 \neq 0$):

$$
\Rightarrow \sigma_{mpk}^2 > \nabla; \quad \text{but, } 1 - \left(\frac{\rho_{pa}}{\rho_{pk}}\right)^2 = \frac{\nabla}{\sigma_{\mu}^2} - \frac{\sigma_{\varepsilon}^2}{\sigma_{\mu}^2} < \frac{\nabla}{\sigma_{\mu}^2} \quad \text{(conservative)}
$$

Note: Results extend to permanent shocks as well
Identification - Robustness

1. Unaffected by correlation in firm/market information

3. Robust to heterogeneity in α: $k_{it} = \frac{E_{it}(a_{it})}{1-\alpha_i} = \frac{1-\alpha}{1-\alpha} E_{it}(a_{it})$

 - Correlated: $\frac{1-\alpha}{1-\alpha_i} \propto E_{it}(a_{it}) \Rightarrow k_{it} = \frac{(1+\gamma)E_{it}(a_{it})}{1-\alpha}$

 - Uncorrelated: does not affect (ρ_{pk}, ρ_{pa})
Identification - Robustness

1. Unaffected by correlation in firm/market information

2. Ambiguous effects from measurement error

- \(\ln y_{it} : 1 - \frac{\rho_{pa}^2 \left(\frac{\sigma^2_\mu}{\sigma^2_\mu + \sigma^2_{\epsilon_y}} \right)}{\rho_{pk}^2} > 1 - \frac{\rho_{pa}^2}{\rho_{pk}^2} = \frac{\gamma}{\sigma^2_\mu} \)

- \(\ln k_{it} : 1 - \frac{\rho_{pa}^2 \left(\frac{\sigma^2_\mu}{\sigma^2_\mu + \alpha^2 \sigma^2_{\epsilon_k} \epsilon_k} \right)}{\rho_{pk}^2 \left(\frac{\sigma^2_\mu - \gamma}{\sigma^2_\mu - \gamma + \sigma^2_{\epsilon_k} + \sigma^2_\mu - \gamma} \right)} > 1 - \frac{\rho_{pa}^2}{\rho_{pk}^2} = \frac{\gamma}{\sigma^2_\mu} \) iff \(\frac{\gamma}{\sigma^2_\mu} < \frac{2\alpha - 1}{\alpha^2} \)

3. Robust to heterogeneity in \(\alpha \): \(k_{it} = \frac{E_{it}(a_{it})}{1-\alpha_i} = \frac{1-\alpha}{1-\alpha_i} \frac{E_{it}(a_{it})}{1-\alpha} \)

 - Correlated: \(\frac{1-\alpha}{1-\alpha_i} \propto E_{it}(a_{it}) \Rightarrow k_{it} = \frac{(1+\gamma)E_{it}(a_{it})}{1-\alpha} \)

 - Uncorrelated: does not affect \((\rho_{pk}, \rho_{pa})\)
Identification - Robustness

1. Unaffected by correlation in firm/market information

2. Ambiguous effects from measurement error

\[\ln y_{it} : 1 - \frac{\rho_{pa}^2 \left(\frac{\sigma_\mu^2}{\sigma_\mu^2 + \sigma_{\epsilon y}^2} \right)}{\rho_{pk}^2} > 1 - \frac{\rho_{pa}^2}{\rho_{pk}^2} = \frac{\nu}{\sigma_\mu^2} \]

\[\ln k_{it} : 1 - \frac{\rho_{pa}^2 \left(\frac{\sigma_\mu^2}{\sigma_\mu^2 + \alpha^2 \sigma_{\epsilon k}^2} \right)}{\rho_{pk}^2 \left(\frac{\sigma_\mu^2 - \nu}{(1-\alpha)^2 \sigma_{\epsilon k}^2 + \sigma_\mu^2 - \nu} \right)} > 1 - \frac{\rho_{pa}^2}{\rho_{pk}^2} = \frac{\nu}{\sigma_\mu^2} \text{ iff } \frac{\nu}{\sigma_\mu^2} < \frac{2\alpha - 1}{\alpha^2} \]

3. Robust to heterogeneity in \(\alpha \): \(k_{it} = \frac{E_{it}(a_{it})}{1-\alpha_i} = \frac{1-\alpha}{1-\alpha_i} \frac{E_{it}(a_{it})}{1-\alpha} \)

- Correlated: \(\frac{1-\alpha}{1-\alpha_i} \propto E_{it}(a_{it}) \Rightarrow k_{it} = \frac{(1+\gamma) E_{it}(a_{it})}{1-\alpha} \)
- Uncorrelated: does not affect \((\rho_{pk}, \rho_{pa})\)
Quantitative analysis: Model

1. Monopolistic competition: \(Y_t = \left(\int A_{it} Y_{it}^{\theta-1} \, di \right)^{\frac{\theta}{\theta-1}} \)

2. Production: \(Y_{it} = K_{it}^{\alpha_1} L_{it}^{\alpha_2} \)
 - Case 1: both factors chosen under imperfect info
 - Case 2: only \(K \) chosen under imperfect info, \(L \) adjusts ex-post

\[\Rightarrow \text{Preserves } \max_{K_{it}} \prod \mathbb{E}_{it} [A_{it}] K_{it}^{\alpha} - RK_{it}; \text{ with } \alpha_{\text{Case 1}} > \alpha_{\text{Case 2}} \]

3. AR(1) process for log \(A_{it} \): \(a_{it} = \rho a_{it-1} + \mu_{it}, \quad \mu_{it} \sim \mathcal{N}(0, \sigma^2_{\mu}) \)

4. Explicit model of stock market trading

\[\Rightarrow \text{Preserves } p_{it} \approx^I a_{it} + \eta_{it} \]
Quantitative analysis: Model

1. Monopolistic competition: \(Y_t = \left(\int A_{it} Y_{it}^{\frac{\theta-1}{\theta}} \, di \right)^{\frac{\theta}{\theta-1}} \)

2. Production: \(Y_{it} = K_{it}^{\alpha_1} L_{it}^{\alpha_2} \)
 - Case 1: both factors chosen under imperfect info
 - Case 2: only \(K \) chosen under imperfect info, \(L \) adjusts ex-post

\[\Rightarrow \text{Preserves } \max_{K_{it}} \prod \mathbb{E}_{it} [A_{it}] K_{it}^{\alpha} - RK_{it}; \text{ with } \alpha_{\text{Case 1}} > \alpha_{\text{Case 2}} \]

3. AR(1) process for log \(A_{it} \): \(a_{it} = \rho a_{it-1} + \mu_{it}, \quad \mu_{it} \sim \mathcal{N} (0, \sigma_{\mu}^2) \)

4. Explicit model of stock market trading

\[\Rightarrow \text{Preserves } p_{it} \approx^\mathcal{I} a_{it} + \eta_{it} \]
The stock market

Unit measure of firm equity traded by 2 type of agents

1. Investors: can purchase up to single unit at price p_{it}
2. Noise traders: purchase random quantity $\Phi(z_{it})$, $z_{it} \sim \mathcal{N}(0, \sigma_z^2)$

Information of investors:

- Private signal: $s_{ijt} = a_{it} + v_{ijt}$, $v_{ijt} \sim \mathcal{N}(0, \sigma_v^2)$
- Stock price: p_{it}

Trading: buy asset if $E_{ijt} \Pi_{it} \geq p_{it}$ or $s_{ijt} > \hat{s}_{it}$

Market clearing: $1 - \Phi\left(\frac{\hat{s}_{it} - a_{it}}{\sigma_v}\right) + \Phi(z_{it}) = 1$

⇒ Info in price: $\hat{s}_{it} = a_{it} + \sigma_v z_{it}$ \[\sigma_\eta^2 = \sigma_v^2 \sigma_z^2\]
The stock market

Unit measure of firm equity traded by 2 type of agents
1. Investors: can purchase up to single unit at price p_{it}
2. Noise traders: purchase random quantity $\Phi(z_{it})$, $z_{it} \sim \mathcal{N}(0, \sigma_z^2)$

Information of investors:
- Private signal: $s_{ijt} = a_{it} + \nu_{ijt}$, $\nu_{ijt} \sim \mathcal{N}(0, \sigma_v^2)$
- Stock price: p_{it}

Trading: buy asset if $E_{ijt} \Pi_{it} \geq p_{it}$ or $s_{ijt} > \hat{s}_{it}$

Market clearing: $1 - \Phi\left(\frac{\hat{s}_{it} - a_{it}}{\sigma_v}\right) + \Phi(z_{it}) = 1$

⇒ Info in price: $\hat{s}_{it} = a_{it} + \sigma_v z_{it}$

$[\frac{\sigma^2_v}{\sigma^2_z} = \sigma^2_v \sigma^2_z]$
The stock market

Unit measure of firm equity traded by 2 type of agents
1. Investors: can purchase up to single unit at price p_{it}
2. Noise traders: purchase random quantity $\Phi(z_{it})$, $z_{it} \sim \mathcal{N}(0, \sigma_z^2)$

Information of investors:
- Private signal: $s_{ijt} = a_{it} + v_{ijt}$, $v_{ijt} \sim \mathcal{N}(0, \sigma_v^2)$
- Stock price: p_{it}

Trading: buy asset if $E_{ijt} \Pi_{it} \geq p_{it}$ or $s_{ijt} > \hat{s}_{it}$

Market clearing: $1 - \Phi\left(\frac{\hat{s}_{it} - a_{it}}{\sigma_v}\right) + \Phi(z_{it}) = 1$

⇒ Info in price: $\hat{s}_{it} = a_{it} + \sigma_v z_{it}$

$[\sigma_\eta^2 = \sigma_v^2 \sigma_z^2]$
The stock market

Unit measure of firm equity traded by 2 type of agents

1. Investors: can purchase up to single unit at price p_{it}
2. Noise traders: purchase random quantity $\Phi (z_{it})$, $z_{it} \sim \mathcal{N}(0, \sigma_z^2)$

Information of investors:

- Private signal: $s_{ijt} = a_{it} + v_{ijt}$, $v_{ijt} \sim \mathcal{N}(0, \sigma_v^2)$
- Stock price: p_{it}

Trading: buy asset if $E_{ijt} \Pi_{it} \geq p_{it}$ or $s_{ijt} > \hat{s}_{it}$

Market clearing: $1 - \Phi \left(\frac{\hat{s}_{it} - a_{it}}{\sigma_v} \right) + \Phi (z_{it}) = 1$

⇒ Info in price: $\hat{s}_{it} = a_{it} + \sigma_v z_{it}$ [$\sigma_\eta^2 = \sigma_v^2 \sigma_z^2$]
Parameterization: general parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Target/Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time period</td>
<td>3 years</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>Discount rate</td>
<td>0.90</td>
</tr>
<tr>
<td>α_1</td>
<td>Capital share</td>
<td>0.33</td>
</tr>
<tr>
<td>α_2</td>
<td>Labor share</td>
<td>0.67</td>
</tr>
<tr>
<td>θ</td>
<td>Elasticity of substitution</td>
<td>6</td>
</tr>
</tbody>
</table>

- If K and L both chosen under imperfect information (case 1)
 \[\alpha = \frac{\theta - 1}{\theta} = 0.83 \]
- If only K chosen under imperfect information (case 2)
 \[\alpha = 0.62 \]
Parameterization: country-specific parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Targets</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ</td>
<td>Persistence of fundamentals</td>
<td>From observed</td>
</tr>
<tr>
<td>σ_{μ}^2</td>
<td>Shocks to fundamentals</td>
<td>$a_{it} = rev_{it} - \alpha k_{it}$</td>
</tr>
<tr>
<td>σ_e^2</td>
<td>Firm private info</td>
<td>ρ_{pi}</td>
</tr>
<tr>
<td>σ_v^2</td>
<td>Investor private info</td>
<td>ρ_{pa}</td>
</tr>
<tr>
<td>σ_z^2</td>
<td>Noise trading</td>
<td>σ_p^2</td>
</tr>
</tbody>
</table>
⇒ Same intuition as in simplified version:

- $\rho_{pa} \rightarrow \text{noise in prices}$
- $(\rho_{pi} - \rho_{pa}) \rightarrow V$
The impact of informational frictions

<table>
<thead>
<tr>
<th>Case 2 ($\alpha = 0.62$)</th>
<th>(\frac{\gamma}{\sigma_{\mu}^2})</th>
<th>(\frac{\gamma}{\sigma_{mrk}^2})</th>
<th>(a^* - a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>US</td>
<td>0.41</td>
<td>0.22</td>
<td>0.04</td>
</tr>
<tr>
<td>China</td>
<td>0.63</td>
<td>0.34</td>
<td>0.07</td>
</tr>
<tr>
<td>India</td>
<td>0.77</td>
<td>0.48</td>
<td>0.10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Case 1 ($\alpha = 0.83$)</th>
<th>(\frac{\gamma}{\sigma_{\mu}^2})</th>
<th>(\frac{\gamma}{\sigma_{mrk}^2})</th>
<th>(a^* - a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>US</td>
<td>0.63</td>
<td>0.35</td>
<td>0.40</td>
</tr>
<tr>
<td>China</td>
<td>0.65</td>
<td>0.39</td>
<td>0.55</td>
</tr>
<tr>
<td>India</td>
<td>0.86</td>
<td>0.56</td>
<td>0.77</td>
</tr>
</tbody>
</table>

- Substantial posterior uncertainty (US firms best informed)
 ⇒ significant misallocation, losses in TFP and output

- Effects increase with α
Discussion

1. Case 1 vs. Case 2

- Interpret our results as bounds; but can we say something more...?
- Suggestive statistics from the US data
 - \(\frac{\sigma^2_{mrpl}}{\sigma^2_{mrpk}} = 0.57 \)
 - \(\frac{\nabla}{\sigma_{\mu}} \) computed with \(N_{it} \approx 0.5 \frac{\nabla}{\sigma_{\mu}} \) computed with \(K_{it} \)

2. Transitory vs. permanent MRPK deviations

- Informational frictions \(\rightarrow \) transitory deviations
- US data: transitory \(\approx 1/3 \) of total
 - \(\nabla \) accounts for 60% in case 2; entirety in case 1
Discussion

1. Case 1 vs. Case 2
 - Interpret our results as bounds; but can we say something more...?
 - Suggestive statistics from the US data
 - \(\frac{\sigma^2_{mrpl}}{\sigma^2_{mrpk}} = 0.57 \)
 - \(\frac{\nabla}{\sigma^2_{\mu}} \) computed with \(N_{it} \approx 0.5 \frac{\nabla}{\sigma^2_{\mu}} \) computed with \(K_{it} \)

2. Transitory vs. permanent MRPK deviations
 - Informational frictions \(\rightarrow \) transitory deviations
 - US data: transitory \(\approx 1/3 \) of total
 - \(\nabla \) accounts for 60% in case 2; entirety in case 1
Sources of learning

<table>
<thead>
<tr>
<th>Case</th>
<th>Share from source</th>
<th>Δa</th>
<th>Private</th>
<th>Market</th>
</tr>
</thead>
<tbody>
<tr>
<td>US</td>
<td>5%</td>
<td></td>
<td>92%</td>
<td>8%</td>
</tr>
<tr>
<td>China</td>
<td>4%</td>
<td></td>
<td>96%</td>
<td>4%</td>
</tr>
<tr>
<td>India</td>
<td>3%</td>
<td></td>
<td>89%</td>
<td>11%</td>
</tr>
<tr>
<td>Case 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US</td>
<td>23%</td>
<td></td>
<td>91%</td>
<td>9%</td>
</tr>
<tr>
<td>China</td>
<td>30%</td>
<td></td>
<td>96%</td>
<td>4%</td>
</tr>
<tr>
<td>India</td>
<td>12%</td>
<td></td>
<td>96%</td>
<td>4%</td>
</tr>
</tbody>
</table>

1. Significant learning ⇒ significant aggregate gains

2. Learning primarily from private sources
 Interpretation? Manager skill/incentives, info collection/processing, etc...

3. Only small role for market-generated info ⇐ just too much noise in prices
Effect of US information structure

<table>
<thead>
<tr>
<th></th>
<th>Case 2</th>
<th>Case 1</th>
<th>Δa</th>
<th>Δa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Market Information</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>1%</td>
<td>2%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>India</td>
<td>1%</td>
<td>4%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Private Information</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>3%</td>
<td>6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>India</td>
<td>5%</td>
<td>26%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shocks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>1%</td>
<td>10%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>India</td>
<td>2%</td>
<td>20%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Gains from US private info > US market info

2. Differences in fundamentals → differential impact of friction
Robustness: correlated information

Are we picking up correlation between firm and investors’ signals?

- Correlated errors \(\rightarrow \uparrow \rho_{pk} \rightarrow \uparrow \nabla \)?

- Strategy: Re-estimate \(\nabla \) assuming \(s_{ijt} = s_{it} + v_{ijt} = a_{it} + e_{it} + v_{ijt} \)

<table>
<thead>
<tr>
<th>Case 2 ((\alpha = 0.62))</th>
<th>(\frac{\nabla}{\sigma^2_{\mu}})</th>
<th>(\frac{\nabla}{\sigma^2_{\mu}}) baseline</th>
<th>(a^* - a)</th>
<th>(a^* - a) baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>US</td>
<td>0.41</td>
<td>0.41</td>
<td>0.040</td>
<td>0.040</td>
</tr>
<tr>
<td>China</td>
<td>0.58</td>
<td>0.63</td>
<td>0.070</td>
<td>0.075</td>
</tr>
<tr>
<td>India</td>
<td>0.68</td>
<td>0.77</td>
<td>0.100</td>
<td>0.114</td>
</tr>
</tbody>
</table>

\(\Rightarrow \) Results almost identical to baseline!
Robustness: correlated information

Are we picking up correlation between firm and investors’ signals?

- Correlated errors → ↑ ρ_{pk} →↑ ∇?
- Strategy: Re-estimate ∇ assuming $s_{ijt} = s_{it} + v_{ijt} = a_{it} + e_{it} + v_{ijt}$

<table>
<thead>
<tr>
<th></th>
<th>$\frac{\nabla}{\sigma^2_{\mu}}$</th>
<th>$\frac{\nabla}{\sigma^2_{\mu}}$ baseline</th>
<th>$a^* - a$</th>
<th>$a^* - a$ baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 2 ($\alpha = 0.62$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US</td>
<td>0.41</td>
<td>0.41</td>
<td>0.040</td>
<td>0.040</td>
</tr>
<tr>
<td>China</td>
<td>0.58</td>
<td>0.63</td>
<td>0.070</td>
<td>0.075</td>
</tr>
<tr>
<td>India</td>
<td>0.68</td>
<td>0.77</td>
<td>0.100</td>
<td>0.114</td>
</tr>
</tbody>
</table>

\Rightarrow Results almost identical to baseline!
Robustness: measurement error in revenues

What if observed \(\hat{y}_{it} = y_{it} + \epsilon_{it}^y\) \(\epsilon_{it}^y \sim \mathcal{N}(0, \sigma_{\epsilon y}^2)\)?

- \(\sigma_{\epsilon y}^2 \rightarrow \downarrow \) \(\rho_{pa} \rightarrow \uparrow \) \(\nabla\)
- **Strategy:** Re-estimate \(\nabla\) with corrected moments

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>(\sigma_{\epsilon y}^2 = 10% \sigma^2(\Delta y))</th>
<th>(\sigma_{\epsilon y}^2 = 25% \sigma^2(\Delta y))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\nabla)</td>
<td>(\nabla)</td>
<td>(\nabla)</td>
</tr>
<tr>
<td></td>
<td>(\frac{\sigma^2}{\mu})</td>
<td>(\frac{\sigma^2}{\mu})</td>
<td>(\frac{\sigma^2}{\mu})</td>
</tr>
<tr>
<td>Case 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US</td>
<td>0.08</td>
<td>0.05</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>0.41</td>
<td>0.28</td>
<td>0.07</td>
</tr>
<tr>
<td>China</td>
<td>0.16</td>
<td>0.14</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>0.63</td>
<td>0.58</td>
<td>0.51</td>
</tr>
<tr>
<td>India</td>
<td>0.22</td>
<td>0.17</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>0.77</td>
<td>0.65</td>
<td>0.61</td>
</tr>
<tr>
<td>Case 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US</td>
<td>0.13</td>
<td>0.12</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>0.63</td>
<td>0.62</td>
<td>0.42</td>
</tr>
<tr>
<td>China</td>
<td>0.18</td>
<td>0.18</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>0.65</td>
<td>0.69</td>
<td>0.73</td>
</tr>
<tr>
<td>India</td>
<td>0.26</td>
<td>0.25</td>
<td>0.22</td>
</tr>
<tr>
<td></td>
<td>0.86</td>
<td>0.91</td>
<td>0.89</td>
</tr>
</tbody>
</table>

\(\Rightarrow\) Upward bias in \(\nabla\), but cross-country results biased downward.
Robustness: measurement error in revenues

What if observed $\hat{y}_{it} = y_{it} + \epsilon_{it}$, $\epsilon_{it} \sim N(0, \sigma_{\epsilon y}^2)$?

- $\sigma_{\epsilon y}^2 \rightarrow \downarrow \rho_{pa} \rightarrow \uparrow \nabla$
- Strategy: Re-estimate ∇ with corrected moments

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>$\sigma_{\epsilon y}^2 = 10% \sigma^2(\Delta y)$</th>
<th>$\sigma_{\epsilon y}^2 = 25% \sigma^2(\Delta y)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>∇</td>
<td>$\nabla_{\sigma^2 \mu}$</td>
<td>$\nabla_{\sigma^2 \mu}$</td>
</tr>
<tr>
<td>Case 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US</td>
<td>0.08</td>
<td>0.41</td>
<td>0.05</td>
</tr>
<tr>
<td>China</td>
<td>0.16</td>
<td>0.63</td>
<td>0.14</td>
</tr>
<tr>
<td>India</td>
<td>0.22</td>
<td>0.77</td>
<td>0.17</td>
</tr>
<tr>
<td>Case 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US</td>
<td>0.13</td>
<td>0.63</td>
<td>0.12</td>
</tr>
<tr>
<td>China</td>
<td>0.18</td>
<td>0.65</td>
<td>0.18</td>
</tr>
<tr>
<td>India</td>
<td>0.26</td>
<td>0.86</td>
<td>0.25</td>
</tr>
</tbody>
</table>

\Rightarrow Upward bias in ∇, but cross-country results biased downward.
Robustness: measurement error in capital

What if observed \(\hat{k}_{it} = k_{it} + \epsilon_{it} \), \(\epsilon_{it} \sim N(0, \sigma_{\epsilon k}^2) \)?

• \(\sigma_{\epsilon k}^2 \rightarrow \downarrow \rho_{pa}, \rho_{pk} \rightarrow \) ?

• Strategy: Re-estimate \(\nabla \) with corrected moments

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>(\sigma_{\epsilon k}^2 = 10% \sigma^2(\Delta y))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>\nabla</td>
<td>(\frac{\nabla}{\sigma_{\mu}^2})</td>
</tr>
<tr>
<td>Case 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US</td>
<td>0.08</td>
<td>0.41</td>
</tr>
<tr>
<td>China</td>
<td>0.16</td>
<td>0.63</td>
</tr>
<tr>
<td>India</td>
<td>0.22</td>
<td>0.77</td>
</tr>
<tr>
<td>Case 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US</td>
<td>0.13</td>
<td>0.63</td>
</tr>
<tr>
<td>China</td>
<td>0.18</td>
<td>0.65</td>
</tr>
<tr>
<td>India</td>
<td>0.26</td>
<td>0.86</td>
</tr>
</tbody>
</table>

⇒ Our approach underestimates uncertainty!
Robustness: measurement error in capital

What if observed $\hat{k}_{it} = k_{it} + \epsilon_{it}^k$?

$\epsilon_{it}^k \sim N(0, \sigma_{\epsilon_k}^2)$?

- $\sigma_{\epsilon_k}^2 \rightarrow \downarrow \rho_{pa}, \rho_{pk} \rightarrow \uparrow$?

- Strategy: Re-estimate ∇ with corrected moments

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>$\sigma_{\epsilon_k}^2 = 10% \sigma^2(\Delta y)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>∇</td>
<td>∇ $\frac{\nabla^2}{\sigma_{\mu}^2}$</td>
</tr>
<tr>
<td>Case 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US</td>
<td>0.08</td>
<td>0.41</td>
</tr>
<tr>
<td>China</td>
<td>0.16</td>
<td>0.63</td>
</tr>
<tr>
<td>India</td>
<td>0.22</td>
<td>0.77</td>
</tr>
<tr>
<td>Case 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US</td>
<td>0.13</td>
<td>0.63</td>
</tr>
<tr>
<td>China</td>
<td>0.18</td>
<td>0.65</td>
</tr>
<tr>
<td>India</td>
<td>0.26</td>
<td>0.86</td>
</tr>
</tbody>
</table>

⇒ Our approach underestimates uncertainty!
Robustness: adjustment costs

Are we re-labeling adjustment costs as info frictions?

- **Strategy:** Simulate moments under full-info and quadratic adj. costs
- **Estimate V using these moments**

<table>
<thead>
<tr>
<th></th>
<th>Adj. Cost</th>
<th>V</th>
<th>Baseline V</th>
</tr>
</thead>
<tbody>
<tr>
<td>US</td>
<td>0.03</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>0.06</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>India</td>
<td>0.08</td>
<td>0.22</td>
<td></td>
</tr>
</tbody>
</table>

- V (and agg effects) about 1/3 of baseline estimates

⇒ Unlikely that adj. costs are driving our estimates
Robustness: adjustment costs

Are we re-labeling adjustment costs as info frictions?

- **Strategy:** Simulate moments under full-info and quadratic adj. costs
- **Estimate** \(V \) using these moments

<table>
<thead>
<tr>
<th></th>
<th>Adj. Cost</th>
<th>(V)</th>
<th>Baseline</th>
<th>(V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>US</td>
<td>0.03</td>
<td>0.08</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>0.06</td>
<td>0.16</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>India</td>
<td>0.08</td>
<td>0.22</td>
<td>0.22</td>
<td></td>
</tr>
</tbody>
</table>

- \(V \) (and agg effects) about 1/3 of baseline estimates

⇒ Unlikely that adj. costs are driving our estimates
Robustness: financial frictions

Are we picking up financing-related effects of stock prices?

- Stock prices $\uparrow \rightarrow$ Funding constraints $\downarrow \rightarrow \rho_{pk} \uparrow \rightarrow \nabla \uparrow$?

- Strategy: Estimate ∇ for ‘unconstrained’ firms

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Small Issuers</th>
<th>Top Quartile</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ_{pi}</td>
<td>ρ_{pa}</td>
<td>$\frac{\nabla^2}{\mu}$</td>
<td>$\frac{\nabla^2}{\mu}$</td>
</tr>
<tr>
<td>US</td>
<td>0.23</td>
<td>0.18</td>
<td>0.41</td>
</tr>
<tr>
<td>China</td>
<td>0.16</td>
<td>0.06</td>
<td>0.63</td>
</tr>
<tr>
<td>India</td>
<td>0.25</td>
<td>0.08</td>
<td>0.77</td>
</tr>
</tbody>
</table>

\Rightarrow Unlikely that the financing channel is driving our results
Robustness: financial frictions

Are we picking up financing-related effects of stock prices?

- Stock prices $\uparrow \rightarrow$ Funding constraints $\downarrow \rightarrow \rho_{pk} \uparrow \rightarrow \nabla \uparrow$?
- Strategy: Estimate ∇ for ‘unconstrained’ firms

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Small Issuers</th>
<th>Top Quartile</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ρ_{pi}</td>
<td>ρ_{pa}</td>
<td>$\frac{\nabla}{\sigma^2_{\mu}}$</td>
</tr>
<tr>
<td>US</td>
<td>0.23</td>
<td>0.18</td>
<td>0.41</td>
</tr>
<tr>
<td>China</td>
<td>0.16</td>
<td>0.06</td>
<td>0.63</td>
</tr>
<tr>
<td>India</td>
<td>0.25</td>
<td>0.08</td>
<td>0.77</td>
</tr>
</tbody>
</table>

\Rightarrow Unlikely that the financing channel is driving our results
Other evidence: Cross-section

- Compute ∇ by sector in the US
- Compare to mean squared error in firm revenue forecasts
Other evidence: Cross-section

- Compute ∇ by sector in the US
- Compare to mean squared error in firm revenue forecasts
Other evidence: Time series

- Compute V over time in the US
- Compare to other indicators of micro uncertainty
Other evidence: Time series

- Compute ∇ over time in the US
- Compare to other indicators of micro uncertainty

Source: Jurado, Ludvigson and Ng, "Measuring Uncertainty", AER
Related literature

Misallocation

- Hsieh and Klenow (09), Restuccia and Rogerson (08), Bartelsman et al. (13)...
- Financial frictions: Buera, Kaboski and Shin (11), Midrigan and Xu (13),...
- Adjustment costs: Asker, Collard-Wexler and De Loecker (13)
- Information frictions: Jovanovic (13)

Stock price informativeness

- Morck, Yeung and Yu (00), Durnev, Yeung and Zarowin (03),...

The “feedback” effect (Bond, Edmans and Goldstein (12))

- Investment: Chen, Goldstein and Jiang (07), Bakke and Whited (10), Morck, Schleifer and Vishny (90)
- R&D spending: Bai, Philippon and Savov (13)
- Mergers and acquisitions: Luo (05)
Conclusion

Theory linking micro uncertainty to misallocation and aggregates

- Substantial uncertainty and associated aggregate losses
- Limited informational role for stock markets
- Significant role for private learning \(\Rightarrow\) drives cross-country differences

Where next?

- Entry/exit
- Other frictions...
Full-info TFP

Simplified model:

\[a^* = \frac{1}{2} \frac{\sigma^2}{1 - \alpha} \]

General model:

\[a^* = \frac{1}{2} \left(\frac{\theta}{\theta - 1} \right) \frac{\sigma_a^2}{1 - \alpha} \]
Identification with iid shocks

\[\rho_{pa} = \frac{1}{\sqrt{1 + \frac{\sigma_v^2 \sigma_z^2}{\sigma_\mu^2}}} \]

\[\rho_{pk} = \frac{1}{\sqrt{\left(1 + \frac{\sigma_v^2 \sigma_z^2}{\sigma_\mu^2}\right) \left(1 - \frac{\psi}{\sigma_\mu^2}\right)}} \]

\[\sigma_p^2 = \left(\frac{1 - \beta}{1 - \alpha}\right)^2 \left(\frac{\sigma_z^2 + 1}{\sigma_z^2 + \frac{1}{\rho_{pa}^2}}\right)^2 \frac{1}{\rho_{pa}^2} \sigma_\mu^2 \]

(\(\downarrow\) in \(\sigma_v \sigma_z\))

(\(\uparrow\) in \(\psi\))

(\(\uparrow\) in \(\sigma_z\))
Identification with permanent shocks

\[\frac{\nabla}{\sigma^2_\mu} = \frac{\rho_{pk} - \rho_{pa}}{\eta} \]

where

\[\eta = \frac{1}{1 - \alpha \sigma_p} \]

\[\frac{\sigma^2_v \sigma^2_z}{\sigma^2_\mu} = \frac{(1 - \eta^2)}{2 \rho^2_{pa}} + \frac{\eta}{\rho_{pa}} - 1 \]

\[\frac{\sigma^2_z + 1}{\sigma^2_z + 1 + \frac{\sigma^2_v \sigma^2_z}{\sigma^2_\mu}} = \frac{1}{\eta} \]
Step 1. \(\text{cov} (p, k) = \text{cov}(p, a) \).

- follows from \(k = E (a|p, s_i) \)
- and since we can write \(a = E (a|p, s_i) + \varepsilon \)
- \(\text{cov} (a, p) = \text{cov} (E (a|p, s_i), p) + \text{cov} (\varepsilon, p) = \text{cov} (k, p) \).

Step 2. divide both sides by \(\sigma_a \sigma_p \) so we get

\[
\frac{[\text{cov} (p, k)]^2}{(\sigma_a \sigma_p)^2} = \rho (p, a)^2 \tag{1}
\]

Step 3. By the law of total covariance, \(\sigma_a^2 = \sigma_k^2 + V \) so

\[
\frac{\sigma_k^2}{\sigma_a^2} = 1 - \frac{V}{\sigma_a^2} \tag{2}
\]

Substituting (2) in (1) we get

\[
\left(1 - \frac{V}{\sigma_a^2} \right) = \left(\frac{\rho (p, a)}{\rho (p, k)} \right)^2
\]

identical to our identification equation.
Investment-Q regressions

Reduced-form representation (with iid shocks):

\[
\Delta k_{it} = \lambda_1 (\Delta \mu_{it} + \Delta e_{it}) + \lambda_2 \Delta p_{it}
\]

Use model to derive:

\[
\lambda_2 \propto \frac{(1 + \gamma)V}{\sigma_{\eta}^2}
\]

Intuition: \(\lambda_2 \) could be large because of

- high uncertainty (high \(V \)) OR
- more information prices (low \(\sigma_{\eta}^2 \)) OR
- correlated distortions (high \(\gamma \))

Also, consistency of \(\lambda_2 \) requires \(\Delta e_{it} \perp \Delta \mu_{it}, \Delta p_{it} \)

- Correlated signals \(\rightarrow \) \(\Delta e_{it} \) correlated with \(\Delta p_{it} \) \(\rightarrow \) endogeneity
Data and parameter values

<table>
<thead>
<tr>
<th>Target moments</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ_{pi}</td>
<td>ρ</td>
</tr>
<tr>
<td>ρ_{pa}</td>
<td>σ_p^2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Case 2</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>US</td>
<td>0.23</td>
<td>0.18</td>
<td>0.23</td>
<td>0.92</td>
<td>0.45</td>
</tr>
<tr>
<td>China</td>
<td>0.16</td>
<td>0.06</td>
<td>0.14</td>
<td>0.78</td>
<td>0.51</td>
</tr>
<tr>
<td>India</td>
<td>0.25</td>
<td>0.08</td>
<td>0.23</td>
<td>0.93</td>
<td>0.53</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Case 1</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>US</td>
<td>0.24</td>
<td>0.10</td>
<td>0.23</td>
<td>0.88</td>
<td>0.46</td>
</tr>
<tr>
<td>China</td>
<td>0.15</td>
<td>0.02</td>
<td>0.14</td>
<td>0.75</td>
<td>0.53</td>
</tr>
<tr>
<td>India</td>
<td>0.26</td>
<td>0.00</td>
<td>0.22</td>
<td>0.88</td>
<td>0.55</td>
</tr>
</tbody>
</table>

Data source: Compustat NA and Compustat Global.

- Cross-country variation in moments \Rightarrow variation in parameters
- US: less fundamental uncertainty, better private info, less noise in markets
Full-information adjustment cost model

- Value function

\[
V \left(\tilde{A}_{it}, K_{it-1} \right) = \max_{K_{it}, N_{it}} G \tilde{A}_{it} K_{it}^{\tilde{\alpha}} - l_{it} - H (l_{it}, K_{it-1}) + \beta \mathbb{E} V \left(\tilde{A}_{it+1}, K_{it} \right)
\]

where \(l_{it} = K_{it} - (1 - \delta) K_{it-1} \) and \(H (l_{it}, K_{it-1}) = \zeta K_{it-1} \left(\frac{l_{it}}{K_{it-1}} \right)^2 \)

- Solve numerically for joint distribution of \(\tilde{A}_{it}, K_{it} \) in GE

- Target \((\rho_{pa}, \sigma_p^2, \sigma_k^2) \) to estimate \((\sigma_v^2, \sigma_z^2, \zeta) \)

- Simulate data to compute \(\rho_{pi} \)